People

Sheng Yang He, Ph.D.

Professor, HHMI/GBMF Investigator

shengyang.he@duke.edu

I am broadly interested in biological processes that mediate the molecular interplay between plants and microbes. In the past two decades, I led an interactive group of postdoctoral, graduate and undergraduate students who are interested in exploring novel phenomena in bacterial pathogenesis and disease susceptibility in plants. In addition, I teach graduate classes on plant and microbial biology and contribute to the large scientific community through serving on a variety of committees.

Read Current Biology Q&A Article

Saunia Withers

Lab Manager

saunia.withers@duke.edu

I joined the He lab during the move to Duke to help coordinate the transition from Michigan State University. My prior lab management experience allows me to keep the lab running efficiently. I also have expertise in protein biochemistry, which I will be using to support the various projects in the lab.

Tim Arapov, Ph.D.

Postdoctoral Researcher

timofey.arapov@duke.edu

Originally from Russia, I grew up in the suburbs of Washington D.C. In my free time, I enjoy traveling, winter sports and scuba diving. I recieved my doctorate from Virginia Tech in 2020, and focused on Sinorhizobium meliloti, an important plant symbiont. I began working in the He lab in October of 2020 where I am focusing on how microbial communities shape the epigenetic landscape of plants.

YuTi Cheng

Yuti Cheng, Ph.D.

Postdoctoral Researcher

yuti.cheng@duke.edu


Using a reverse genetics approach, I study the function of Arabidopsis genes whose expression are affected by the bacterial elicitor flg22, the bacterial toxin coronatine, and/or the salicylic acid analog BTH.

Richard Hilleary, Ph.D.

Postdoctoral Researcher

richard.hilleary@duke.edu

I am broadly interested in signal transduction processes that allow plants and other organisms to perceive changes in their environment. My research focuses on elucidating the molecular species regulating the generation and maintenance of calcium signals during plant-pathogen interactions and how abiotic factors can influence this process on the cellular and molecular level.

Jonghum Kim, Ph.D.

Postdoctoral Researcher

jonghum.kim@duke.edu

Previous studies in our lab indicate that plant-microbe interactions are influence by a number of environmental conditions, including temperature and humidity. As average global temperatures increase, our understanding of the connections between elevated temperature and pathogenesis is increasingly important for effective crop management. Within this context, I'm interested in the molecular and cellular "crosstalk" that occurs when plants are simultaneously challenged by pathogen infection and elevated environmental temperature.

Hannah McMillan, Ph.D.

Postdoctoral Researcher

hannah.mcmillan@duke.edu

I am interested in how plants and microbes communicate and use perceived signals to respond appropriately. In the context of altered abiotic conditions, these signals and responses change and may disrupt a plant's ability to distinguish friend from foe. My current research examines how microbiome structure and function may change in response to elevated temperature. Additionally, I am studying how plant extracellular vesicles, which have known roles in plant-pathogen interactions, may alter microbiome composition.

Kinya Nomura

Kinya Nomura, Ph.D.

Postdoctoral Researcher

kinya.nomura@duke.edu


I work with Pseudomonas syringae Type-III effectors, which suppress plant immunity during infection.

Comzit Opachaloemphan, Ph.D.

Postdoctoral Researcher

comzit.opachaloemphan@duke.edu


I am broadly interested in how plants respond to changes in environmental conditions such as humidity and temperature. These changes influence plant growth and disease susceptibility. Heavy rain or high air humidity commonly facilitates bacterial infections. My current research is to understand how plants sense and respond to high humidity.

Reza Sohrabi, Ph.D.

Postdoctoral Researcher

reza.sohrabi@duke.edu

My research focuses on studying plant-microbiota-environment interactions under biotic and abiotic stresses. Using a gnotobiotic plant growth setup, I am studying mechanisms of microbiota functions in enhancing plant health and growth and evaluating the roles of small molecules from defined microbial communities in mediating host processes.

André Velásquez, Ph.D.

Postdoctoral Researcher

andre.velasquez@duke.edu


My research is currently focused on understanding the mechanisms by which PAMP-triggered immunity is able to prevent pathogen establishment and growth. I am also investigating the variability of resistance to Pseudomonas syringae encountered in different natural accessions of Arabidopsis. Finally, a third project in which I am involved focuses into engineering new resistance pathways in plants.

Li Zhang

Li Zhang, M.S., Ph.D.

Postdoctoral Researcher

li.zhang176@duke.edu


The overall goal of my research is to understand how the bacterial pathogen Pseudomonas syringae infects plants. My first project is aimed at engineering jasmonate receptor mutants that have reduced sensitivity to coronatine, but preserve responsiveness to endogenous jasmonate. My second project is to clone Arabidopsis genes that, when mutated, restore the virulence of coronatine-deficient mutants of P. syringae bacteria.

Rose Kithan

Ph.D. Student

kithanro@msu.edu

Microbial colonization can offer significant benefits to the overall health of a host plant. However, our fundamental understanding of the mechanisms underlying microbial assembly, activity, and recruitment is limited. To harness the power of colonization by beneficial microbial communities in agriculture, we must obtain a holistic understanding of the interactions that occur between the host plant and colonizing microbes. To that end, I’m interested in studying the mechanisms by which plants control the quantity and content of the leaf microbiota, as well as how microbe-microbe interactions further influence community assembly.

Brad Paasch

Brad Paasch

Ph.D. Candidate

bradley.paasch@duke.edu


My research focuses on unraveling the molecular mechanisms in which a plant microbiome influences host processes. The role of a microbiome on plant development and innate immunity are of particular interest to my research.

Adam Seroka

Ph.D. Candidate

serokaad@msu.edu

My research focuses on the interaction between Pseudomonas syringae pv. DC3000 and Arabidopsis thaliana and how local infection and activation of defense systemically disrupts plant growth and movements. By studying the interconnected nature between plant pathogens, defense, and development, we can gain a broader insight into the molecular mechanisms that regulate plant behavior.

Undergraduates

Ian Bower - imb17@duke.edu

Tim Johnson - john6512@msu.edu

Visiting Scholars

Dr. Anne Rea

Social Events

Group picture after walk through Duke Gardens - Lab Retreat 2021

Group picture after walk through Duke Gardens - Lab Retreat 2021

Halloween festivities on the 4th floor (2019)

Group picture after ziplining - 2019 He Lab Retreat

MPS 4200 bids a fond farewell to He Lab member Danve Castroverde (2019)

Happy Halloween from the He Lab! (2018)

Enjoying the fall colors in Baker Woodlot at MSU (October 2018)

He Lab Retreat (2018)

First and Second place winners of the first annual He Lab Games at the 2018 He Lab Retreat

Lab Lunch during ICAR in St. Louis (2017)

Spartans Will pose (2017)

The He Lab annual retreat up north to the beautiful Au Sable River for boating, games, fishing, relaxation, and of course, riveting scientific discussions (2014)

Playing some music at Sheng Yang's house (2012)

Lab ski trip to Crystal Mountain (2013)

Another photo from the annual lab retreat (2014)